Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 222: 105799, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38190973

RESUMO

Adenovirus infections of immunocompromised humans are a significant source of morbidity and mortality. Presently, there is no drug specifically approved for the treatment of adenovirus infections by the FDA. The state-of-the-art treatment of such infections is the off-label use of cidofovir, an acyclic nucleotide phosphonate. While cidofovir inhibits adenovirus replication, it has dose-limiting kidney toxicity. There is an apparent need for a better compound to treat adenovirus infections. To this end, we have been developing acyclic nucleotide phosphonate prodrugs that utilize an amino acid scaffold equipped with a lipophilic modifier. Here, we compare the antiviral potential of two prodrugs of HPMPA that differ only in the amino acid-based promoiety: USC-087, based on an N-hexadecyl tyrosinamide, and USC-093, based on an N-hexadecyl serinamide. Oral administration of both compounds was very efficacious against disseminated HAdV-C6 infection in immunosuppressed Syrian hamsters, suppressing virus replication and mitigating pathology even when treatment was withheld until 4 days after challenge. We saw only marginal efficacy after respiratory infection of hamsters, which may reflect suboptimal distribution to the lung. Importantly, neither compound induced intestinal toxicity, which was observed as the major adverse effect in clinical trials of brincidofovir, a prodrug of cidofovir which also contains a C-16 modifier. Notably, we found that there was a significant difference in the nephrotoxicity of the two compounds: USC-087 caused significant kidney toxicity while USC-093 did not, at effective doses. These findings will be valuable guidepoints in the future evolution of this new class of potential prodrugs to treat adenovirus infections.


Assuntos
Adenina/análogos & derivados , Infecções por Adenoviridae , Infecções por Adenovirus Humanos , Organofosfonatos , Pró-Fármacos , Tirosina/análogos & derivados , Cricetinae , Animais , Humanos , Infecções por Adenovirus Humanos/tratamento farmacológico , Cidofovir/farmacologia , Cidofovir/uso terapêutico , Mesocricetus , Antivirais/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Adenoviridae , Replicação Viral , Organofosfonatos/farmacologia , Organofosfonatos/uso terapêutico , Infecções por Adenoviridae/tratamento farmacológico , Citosina/farmacologia , Citosina/uso terapêutico , Aminoácidos/farmacologia , Nucleotídeos/uso terapêutico
2.
Bioorg Med Chem ; 96: 117531, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972434

RESUMO

The main protease (Mpro) represents one of the most effective and attractive targets for designing anti-SARS-CoV-2 drugs. In this study, we designed and synthesized a novel series of Ebselen derivatives by incorporating privileged fragments from different pockets of the Mpro active site. Among these compounds, 11 compounds showed submicromolar activity in the FRET-based SARS-CoV-2 Mpro inhibition assay, with IC50 values ranging from 233 nM to 550 nM. Notably, compound 3a displayed submicromolar Mpro activity (IC50 = 364 nM) and low micromolar antiviral activity (EC50 = 8.01 µM), comparable to that of Ebselen (IC50 = 339 nM, EC50 = 3.78 µM). Time-dependent inhibition assay confirmed that these compounds acted as covalent inhibitors. Taken together, our optimization campaigns thoroughly explored the structural diversity of Ebselen and verified the impact of specific modifications on potency against Mpro.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Azóis/farmacologia , Relação Estrutura-Atividade , Inibidores de Proteases/farmacologia , Antivirais/farmacologia , Simulação de Acoplamento Molecular
3.
J Med Chem ; 66(23): 16426-16440, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37992202

RESUMO

The ongoing transmission of SARS-CoV-2 necessitates the development of additional potent antiviral agents capable of combating the current highly infectious variants and future coronaviruses. Here, we present the discovery of potent nonpeptide main protease (Mpro) inhibitors with prominent antiviral activity and improved pharmacokinetic properties. Three series of 1,2,4-trisubstituted piperazine derivatives were designed and synthesized, and the optimal GC-78-HCl demonstrated high enzyme-inhibitory potency (IC50 = 0.19 µM) and exhibited excellent antiviral activity (EC50 = 0.40 µM), reaching the same level as Nirmatrelvir (EC50 = 0.38 µM). Additionally, GC-78-HCl displayed potent antiviral activities against various SARS-CoV-2 variants as well as HCoV-OC43 and HCoV-229E, indicating its potential broad-spectrum anticoronaviral activity. Notably, the pharmacokinetic properties of GC-78-HCl were somewhat enhanced compared to those of the lead compound. Furthermore, the cocrystal and molecular docking elucidated the mechanism of action. In conclusion, we discovered a novel nonpeptidic Mpro inhibitor with promising antiviral activity and a favorable pharmacokinetic profile.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Antivirais/farmacologia , Antivirais/química , Piperazinas/farmacologia
4.
RSC Med Chem ; 14(10): 2068-2078, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37859715

RESUMO

SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) is considered an attractive target for the development of anti-COVID-19 agents due to its vital function. The N-substituted isatin derivative L-26 is a potential SARS-CoV-2 3CLpro inhibitor, but it has poor cell-based antiviral activity and high cytotoxicity. With L-26 as the lead compound, 58 isatin derivatives were prepared using click-chemistry-based miniaturized synthesis and their 3CLpro inhibitory activities were determined by a fluorescence resonance energy transfer-based enzymatic assay. Compounds D1N8 (IC50 = 0.44 ± 0.12 µM) and D1N52 (IC50 = 0.53 ± 0.21 µM) displayed excellent inhibitory potency against SARS-CoV-2 3CLpro, being equivalent to that of L-26 (IC50 = 0.30 ± 0.14 µM). In addition, the cytotoxicity of D1N8 (CC50 >20 µM) and D1N52 (CC50 >20 µM) decreased significantly compared with L-26 (CC50 <2.6 µM). Further molecular dynamics simulations revealed the potential binding interactions between D1N52 and SARS-CoV-2 3CLpro. These efforts lay a solid foundation for the research of novel anti-SARS-CoV-2 agents targeting 3CLpro.

5.
Mol Pharm ; 20(1): 370-382, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36484496

RESUMO

DNA viruses are responsible for many diseases in humans. Current treatments are often limited by toxicity, as in the case of cidofovir (CDV, Vistide), a compound used against cytomegalovirus (CMV) and adenovirus (AdV) infections. CDV is a polar molecule with poor bioavailability, and its overall clinical utility is limited by the high occurrence of acute nephrotoxicity. To circumvent these disadvantages, we designed nine CDV prodrug analogues. The prodrugs modulate the polarity of CDV with a long sulfonyl alkyl chain attached to one of the phosphono oxygens. We added capping groups to the end of the alkyl chain to minimize ß-oxidation and focus the metabolism on the phosphoester hydrolysis, thereby tuning the rate of this reaction by altering the alkyl chain length. With these modifications, the prodrugs have excellent aqueous solubility, optimized metabolic stability, increased cellular permeability, and rapid intracellular conversion to the pharmacologically active diphosphate form (CDV-PP). The prodrugs exhibited significantly enhanced antiviral potency against a wide range of DNA viruses in infected human foreskin fibroblasts. Single-dose intravenous and oral pharmacokinetic experiments showed that the compounds maintained plasma and target tissue levels of CDV well above the EC50 for 24 h. These experiments identified a novel lead candidate, NPP-669. NPP-669 demonstrated efficacy against CMV infections in mice and AdV infections in hamsters following oral (p.o.) dosing at a dose of 1 mg/kg BID and 0.1 mg/kg QD, respectively. We further showed that NPP-669 at 30 mg/kg QD did not exhibit histological signs of toxicity in mice or hamsters. These data suggest that NPP-669 is a promising lead candidate for a broad-spectrum antiviral compound.


Assuntos
Infecções por Citomegalovirus , Organofosfonatos , Pró-Fármacos , Camundongos , Humanos , Animais , Antivirais/farmacocinética , Disponibilidade Biológica , Pró-Fármacos/farmacologia , Citosina , Cidofovir
6.
J Med Chem ; 65(24): 16902-16917, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36475694

RESUMO

The spread of SARS-CoV-2 keeps threatening human life and health, and small-molecule antivirals are in demand. The main protease (Mpro) is an effective and highly conserved target for anti-SARS-CoV-2 drug design. Herein, we report the discovery of potent covalent non-peptide-derived Mpro inhibitors. A series of covalent compounds with a piperazine scaffold containing different warheads were designed and synthesized. Among them, GD-9 was identified as the most potent compound with a significant enzymatic inhibition of Mpro (IC50 = 0.18 µM) and good antiviral potency against SARS-CoV-2 (EC50 = 2.64 µM), similar to that of remdesivir (EC50 = 2.27 µM). Additionally, GD-9 presented favorable target selectivity for SARS-CoV-2 Mpro versus human cysteine proteases. The X-ray co-crystal structure confirmed our original design concept showing that GD-9 covalently binds to the active site of Mpro. Our nonpeptidic covalent inhibitors provide a basis for the future development of more efficient COVID-19 therapeutics.


Assuntos
COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular , Piperazinas/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo
7.
Antiviral Res ; 208: 105431, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209985

RESUMO

Clusters of acute non HepA-E hepatitis cases in previously healthy children have been reported globally. At least, 1010 cases were identified in 35 countries, 5% of those cases required liver transplantation and 2% died. The exact cause is not yet known, but there is circumstantial evidence suggesting that human adenovirus F41 (HAdV-F41) might be playing a role. No antiviral drug has been approved for treating human adenovirus infections. Furthermore, HAdV-F41 is notoriously difficult to grow in cell culture, which hindered studying the efficacy of an antiviral compound against this virus. Here, we show that filociclovir (FCV), a nucleoside analog, is a potent inhibitor of HAdV-F41 in cell culture using 2 approaches, namely immunostaining of infected cells and virus yield reduction assay. The activity of FCV was compared to 3 other known antivirals: cidofovir (CDV), ganciclovir (GCV) and valganciclovir (VGCV). Among the 4 compounds examined in this study, FCV was the most potent, with an EC50 of 3.5 µM. These compounds can be ranked by potency as follows: FCV > CDV > GCV ≥ VGCV. In addition, FCV was 10-fold more potent than CDV in a virus yield reduction assay. This report provides timely and valuable methodologies to the research community for testing antivirals against HAdV-F41. Our findings also support the continued development of FCV for various therapeutic applications, including pediatric hepatitis, if a causal relationship is firmly established in the future.


Assuntos
Adenovírus Humanos , Humanos , Criança , Antivirais/farmacologia , Antivirais/uso terapêutico , Valganciclovir , Ganciclovir/uso terapêutico , Cidofovir/farmacologia
8.
J Med Chem ; 65(19): 13343-13364, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36107752

RESUMO

The continuous spread of SARS-CoV-2 calls for more direct-acting antiviral agents to combat the highly infectious variants. The main protease (Mpro) is an promising target for anti-SARS-CoV-2 drug design. Here, we report the discovery of potent non-covalent non-peptide Mpro inhibitors featuring a 1,2,4-trisubstituted piperazine scaffold. We systematically modified the non-covalent hit MCULE-5948770040 by structure-based rational design combined with multi-site binding and privileged structure assembly strategies. The optimized compound GC-14 inhibits Mpro with high potency (IC50 = 0.40 µM) and displays excellent antiviral activity (EC50 = 1.1 µM), being more potent than Remdesivir. Notably, GC-14 exhibits low cytotoxicity (CC50 > 100 µM) and excellent target selectivity for SARS-CoV-2 Mpro (IC50 > 50 µM for cathepsins B, F, K, L, and caspase 3). X-ray co-crystal structures prove that the inhibitors occupy multiple subpockets by critical non-covalent interactions. These studies may provide a basis for developing a more efficient and safer therapy for COVID-19.


Assuntos
COVID-19 , Hepatite C Crônica , Antivirais/química , Antivirais/farmacologia , Caspase 3 , Catepsinas , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ácido Orótico/análogos & derivados , Piperazinas/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
10.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816736

RESUMO

Human adenovirus (HAdV) infection is common in the general population and can cause a range of clinical manifestations, among which pneumonia and keratoconjunctivitis are the most common. Although HAdV infections are mostly self-limiting, infections in immunocompromised individuals can be severe. No antiviral drug has been approved for treating adenoviruses. Filociclovir (FCV) is a nucleoside analogue which has successfully completed phase I human clinical safety studies and is now being developed for treatment of human cytomegalovirus (HCMV)-related disease in immunocompromised patients. In this report, we show that FCV is a potent broad-spectrum inhibitor of HAdV types 4 to 8, with 50% effective concentrations (EC50s) ranging between 1.24 and 3.6 µM and a 50% cytotoxic concentration (CC50) of 100 to 150 µM in human foreskin fibroblasts (HFFs). We also show that the prophylactic oral administration of FCV (10 mg/kg of body weight) 1 day prior to virus challenge and then daily for 14 days to immunosuppressed Syrian hamsters infected intravenously with HAdV6 was sufficient to prevent morbidity and mortality. FCV also mitigated tissue damage and inhibited virus replication in the liver. The 10-mg/kg dose had similar effects even when the treatment was started on day 4 after virus challenge. Furthermore, FCV administered at the same dose after intranasal challenge with HAdV6 partially mitigated body weight loss but significantly reduced pathology and virus replication in the lung. These findings suggest that FCV could potentially be developed as a pan-adenoviral inhibitor.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Infecções por Citomegalovirus , Infecções por Adenovirus Humanos/tratamento farmacológico , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Cricetinae , Infecções por Citomegalovirus/tratamento farmacológico , Humanos , Replicação Viral
11.
Dis Model Mech ; 13(8)2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32651192

RESUMO

Model animals are indispensable for the study of human diseases, and in general, of complex biological processes. The Syrian hamster is an important model animal for infectious diseases, behavioral science and metabolic science, for which more experimental tools are becoming available. Here, we describe the generation and characterization of an interleukin-2 receptor subunit gamma (Il2rg) knockout (KO) Syrian hamster strain. In humans, mutations in IL2RG can result in a total failure of T and natural killer (NK) lymphocyte development and nonfunctional B lymphocytes (X-linked severe combined immunodeficiency; XSCID). Therefore, we sought to develop a non-murine model to study XSCID and the infectious diseases associated with IL2RG deficiency. We demonstrated that the Il2rg KO hamsters have a lymphoid compartment that is greatly reduced in size and diversity, and is impaired in function. As a result of the defective adaptive immune response, Il2rg KO hamsters developed a more severe human adenovirus infection and cleared virus less efficiently than immune competent wild-type hamsters. Because of this enhanced virus replication, Il2rg KO hamsters developed more severe adenovirus-induced liver pathology than wild-type hamsters. This novel hamster strain will provide researchers with a new tool to investigate human XSCID and its related infections.


Assuntos
Imunidade Adaptativa , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/patogenicidade , Hospedeiro Imunocomprometido , Subunidade gama Comum de Receptores de Interleucina/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Células A549 , Infecções por Adenovirus Humanos/genética , Infecções por Adenovirus Humanos/imunologia , Infecções por Adenovirus Humanos/metabolismo , Adenovírus Humanos/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Fígado/imunologia , Fígado/metabolismo , Fígado/virologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/virologia , Masculino , Mesocricetus/genética , Carga Viral , Replicação Viral , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/metabolismo
12.
Hum Vaccin Immunother ; 16(3): 636-644, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31584324

RESUMO

Treatments with cytotoxic agents or viruses may cause Immunogenic Cell Death (ICD) that immunize tumor-bearing hosts but do not cause complete regression of tumor. We postulate that combining two ICD inducers may cause durable regression in immunocompetent mice. ICD was optimized in vitro by maximizing calreticulin externalization in human colorectal carcinoma (CRC) cells by exposure to mixtures of Oxaliplatin (OX) and human adenovirus (AdV). Six mm diameter CT26 or 4T1 carcinomas in flanks of BALB/c mice were injected once intratumorally (IT) with OX, AdV or their mixture. Tumor growth, Tumor-Infiltrating Lymphocytes (TIL), nodal cytotoxicity, and rejection of a viable cell challenge were measured. Tumors injected IT once with an optimum mixture of 80 µM OX - AdV 25 Multiplicity of Infection (MOI) in PBS buffer were 17-29% the volume of control tumors. When buffer was changed from PBS to 5% dextrose in water (D5W), volumes of tumors injected IT with 80 µM OX-AdV 25 MOI were 10% while IT OX or AdV alone were 32% and 40% the volume of IT buffer-treated tumors. OX-AdV IT increased CD3+ TIL by 4-fold, decreased CD8+ PD-1+ TIL from 79% to 19% and induced cytotoxicity to CT26 cells in draining node lymphocytes while lymphocytes from CT26-bearing untreated mice were not cytotoxic. OX-AdV IT in D5W caused complete regression in 40% of mice. Long-term survivors rejected a contralateral challenge of CT26. The buffer for Oxaliplatin is critical. The two ICD inducer mixture is promising as an agnostic sensitizer for carcinomas like colorectal carcinoma.


Assuntos
Neoplasias Colorretais , Morte Celular Imunogênica , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Oxaliplatina
13.
FEMS Microbiol Rev ; 43(4): 380-388, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30916746

RESUMO

The symptoms of human adenovirus infections are generally mild and self-limiting. However, these infections have been gaining importance in recent years because of a growing number of immunocompromised patients. Solid organ and hematopoietic stem cell transplant patients are subjected to severe immunosuppressive regimes and cannot efficaciously eliminate virus infections. In these patients, adenovirus infections can develop into deadly multi-organ disseminated disease. Presently, in the absence of approved therapies, physicians rely on drugs developed for other purposes to treat adenovirus infections. As there is a need for anti-adenoviral therapies, researchers have been developing new agents and repurposing existing ones to treat adenovirus infections. There are several small molecule drugs that are being tested for their efficacy against human adenoviruses; some of these have reached clinical trials, while others are still in the preclinical phase. Besides these compounds, research on immunotherapy against adenoviral infection has made significant progress, promising another modality for treatment. The availability of an animal model confirmed the activity of some drugs already in clinical use while proving that others are inactive. This led to the identification of several lead compounds that await further development. In the present article, we review the current status of anti-adenoviral therapies and their advancement by in vivo studies in the Syrian hamster model.


Assuntos
Infecções por Adenoviridae/tratamento farmacológico , Adenovírus Humanos/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/uso terapêutico , Desenvolvimento de Medicamentos , Mesocricetus , Animais , Cricetinae , Modelos Animais de Doenças
14.
Viruses ; 10(5)2018 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-29734775

RESUMO

The accumulating evidence demonstrates that Syrian hamsters have advantages as models for various diseases. To develop a Syrian hamster (Mesocricetus auratus) model of human immunodeficiency caused by RAG1 gene mutations, we employed the CRISPR/Cas9 system and introduced an 86-nucleotide frameshift deletion in the hamster RAG1 gene encoding part of the N-terminal non-core domain of RAG1. Histological and immunohistochemical analyses demonstrated that these hamsters (referred herein as RAG1-86nt hamsters) had atrophic spleen and thymus, and developed significantly less white pulp and were almost completely devoid of splenic lymphoid follicles. The RAG1-nt86 hamsters had barely detectable CD3⁺ and CD4⁺ T cells. The expression of B and T lymphocyte-specific genes (CD3γ and CD4 for T cell-specific) and (CD22 and FCMR for B cell-specific) was dramatically reduced, whereas the expression of macrophage-specific (CD68) and natural killer (NK) cell-specific (CD94 and KLRG1) marker genes was increased in the spleen of RAG1-nt86 hamsters compared to wildtype hamsters. Interestingly, despite the impaired development of B and T lymphocytes, the RAG1-86nt hamsters still developed neutralizing antibodies against human adenovirus type C6 (HAdV-C6) upon intranasal infection and were capable of clearing the infectious viruses, albeit with slower kinetics. Therefore, the RAG1-86nt hamster reported herein (similar to the hypomorphic RAG1 mutations in humans that cause Omenn syndrome), may provide a useful model for studying the pathogenesis of the specific RAG1-mutation-induced human immunodeficiency, the host immune response to adenovirus infection and other pathogens as well as for evaluation of cell and gene therapies for treatment of this subset of RAG1 mutation patients.


Assuntos
Infecções por Adenoviridae/imunologia , Genes RAG-1/genética , Genes RAG-1/imunologia , Síndromes de Imunodeficiência/genética , Adenovírus Humanos , Animais , Linfócitos B/citologia , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Mutação da Fase de Leitura , Células Matadoras Naturais/citologia , Mesocricetus , Baço/imunologia , Baço/patologia , Linfócitos T/citologia
15.
Antiviral Res ; 153: 1-9, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510156

RESUMO

Human adenoviruses (AdV) cause generally mild infections of the respiratory and GI tracts as well as some other tissues. However, AdV can cause serious infection in severely immunosuppressed individuals, especially pediatric patients undergoing allogeneic hematopoietic stem cell transplantation, where mortality rates are up to 80% with disseminated disease. Despite the seriousness of AdV disease, there are no drugs approved specifically to treat AdV infections. We report here that USC-087, an N-alkyl tyrosinamide phosphonate ester prodrug of HPMPA, the adenine analog of cidofovir, is highly effective against multiple AdV types in cell culture. USC-087 is also effective against AdV-C6 in our immunosuppressed permissive Syrian hamster model. In this model, hamsters are immunosuppressed by treatment with high dose cyclophosphamide. Injection of AdV-C6 (or AdV-C5) intravenously leads to a disseminated infection that resembles the disease seen in humans, including death. We have tested the efficacy of orally-administered USC-087 against the median lethal dose of intravenously administered AdV-C6. USC-087 completely prevented or significantly decreased mortality when administered up to 4 days post challenge. USC-087 also prevented or significantly decreased liver damage caused by AdV-C6 infection, and suppressed virus replication even when administered 4 days post challenge. These results imply that USC-087 is a promising candidate for drug development against HAdV infections.


Assuntos
Adenina/análogos & derivados , Infecções por Adenovirus Humanos/tratamento farmacológico , Adenovírus Humanos/efeitos dos fármacos , Antivirais/administração & dosagem , Organofosfonatos/administração & dosagem , Pró-Fármacos/administração & dosagem , Tirosina/análogos & derivados , Adenina/administração & dosagem , Administração Oral , Animais , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Fígado/patologia , Mesocricetus , Análise de Sobrevida , Resultado do Tratamento , Tirosina/administração & dosagem
16.
Virology ; 514: 66-78, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29132049

RESUMO

Recently, increasing attention has been focused on the influence of sex on the course of infectious diseases. Thus far, the best-documented examples point toward an immune-mediated mechanism: the generally stronger immune response in females can result in a faster clearance of the pathogen or, conversely, a more severe immune-mediated pathology. Here, we report that human species C adenoviruses replicate more and cause more pathology in male Syrian hamsters than in females. We also show that this sex disparity is not caused by a stronger immune response to the infection by the female hamsters. Rather, the liver of male hamsters is more susceptible to adenovirus infection: after intravenous injection, more hepatocytes become infected in male animals than in females. We hypothesize that Kupffer cells (hepatic tissue macrophages) of female animals are more active in sequestering circulating virions, and thus protect hepatocytes more efficiently than those of males.


Assuntos
Infecções por Adenoviridae/virologia , Adenovírus Humanos/fisiologia , Infecções por Adenoviridae/imunologia , Animais , Cricetinae , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Humanos , Células de Kupffer/imunologia , Células de Kupffer/virologia , Fígado/imunologia , Fígado/virologia , Masculino , Mesocricetus , Fatores Sexuais
17.
Mol Ther Nucleic Acids ; 8: 300-316, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918031

RESUMO

Infections of immunocompromised patients with human adenoviruses (hAd) can develop into life-threatening conditions, whereas drugs with anti-adenoviral efficiency are not clinically approved and have limited efficacy. Small double-stranded RNAs that induce RNAi represent a new class of promising anti-adenoviral therapeutics. However, as yet, their efficiency to treat hAd5 infections has only been investigated in vitro. In this study, we analyzed artificial microRNAs (amiRs) delivered by self-complementary adeno-associated virus (scAAV) vectors for treatment of hAd5 infections in immunosuppressed Syrian hamsters. In vitro evaluation of amiRs targeting the E1A, pTP, IVa2, and hexon genes of hAd5 revealed that two scAAV vectors containing three copies of amiR-pTP and three copies of amiR-E1A, or six copies of amiR-pTP, efficiently inhibited hAd5 replication and improved the viability of hAd5-infected cells. Prophylactic application of amiR-pTP/amiR-E1A- and amiR-pTP-expressing scAAV9 vectors, respectively, to immunosuppressed Syrian hamsters resulted in the reduction of hAd5 levels in the liver of up to two orders of magnitude and in reduction of liver damage. Concomitant application of the vectors also resulted in a decrease of hepatic hAd5 infection. No side effects were observed. These data demonstrate anti-adenoviral RNAi as a promising new approach to combat hAd5 infection.

18.
Antiviral Res ; 146: 121-129, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28827083

RESUMO

Adenovirus infections of immunocompetent adults are usually mild and resolve without serious sequelae. However, adenovirus infections of immunocompromised patients often develop into life-threatening multi-organ disease. Pediatric hematopoietic transplant patients are especially threatened, with high incidence of infection and high mortality rates. Presently, there is no drug specifically approved by the FDA to treat adenovirus infections; thus there is an urgent need to develop effective antivirals against the virus. Previously, we demonstrated that brincidofovir and valganciclovir were efficacious against lethal intravenous challenge with human type 5 adenovirus in the Syrian hamster model. Here, we tested the in vivo efficacy of the combination of these two drugs and showed that the combination of brincidofovir and valganciclovir is more efficacious than either drug alone, thus potentially allowing decreased patient exposure to the drugs while maintaining antiviral efficacy. As antiviral compounds often have toxic side effects, a decrease in dose or duration of therapy allowed by the combination could also improve tolerability.


Assuntos
Infecções por Adenoviridae/tratamento farmacológico , Adenovírus Humanos/efeitos dos fármacos , Antivirais/uso terapêutico , Citosina/análogos & derivados , Ganciclovir/análogos & derivados , Organofosfonatos/uso terapêutico , Infecções por Adenoviridae/virologia , Adenovírus Humanos/fisiologia , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Citosina/administração & dosagem , Citosina/farmacologia , Citosina/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Ganciclovir/administração & dosagem , Ganciclovir/farmacologia , Ganciclovir/uso terapêutico , Células HEK293 , Humanos , Hospedeiro Imunocomprometido , Mesocricetus , Organofosfonatos/administração & dosagem , Organofosfonatos/farmacologia , Valganciclovir , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
19.
Viruses ; 9(6)2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28608847

RESUMO

Adenovirus infections of immunocompromised patients can cause a severe multi-organ disease that often results in the patients' death. Presently, there are no drugs specifically approved to treat adenovirus infections, and clinicians resort to the off-label use of antivirals that are approved to treat other DNA virus infections, most frequently cidofovir (CDV). CDV, however, has considerable nephrotoxicity, thus it is recommended only for the most severe cases of adenovirus infections. To facilitate the development of effective, non-toxic antivirals against adenovirus, we have developed a permissive animal model based on the Syrian hamster that can be used to test the efficacy of antiviral compounds. Here, we show that in the hamster model, HAdV-C6 is a more useful challenge virus than the previously described HAdV-C5, because it is filtered out by tissue macrophages to a lesser extent. HAdV-C6 has a 10-fold lower LD50 in hamsters than HAdV-C5 and the pathology is caused by virus replication to a larger extent. We show that valganciclovir (VGCV), a drug that was shown to be active against intravenous HAdV-C5 infection previously, is efficacious against HAdV-C6 when administered either prophylactically or therapeutically. Further, we show for the first time that VGCV, and to a lesser extent CDV, can be used to treat respiratory adenovirus infections in the hamster model. These results extend the utility of the hamster model, and demonstrate the efficacy of two drugs available for clinicians to treat adenovirus infections.


Assuntos
Infecções por Adenoviridae/tratamento farmacológico , Infecções por Adenoviridae/virologia , Adenovírus Humanos/efeitos dos fármacos , Antivirais/uso terapêutico , Células A549 , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenovirus Humanos/tratamento farmacológico , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/fisiologia , Animais , Antivirais/administração & dosagem , Linhagem Celular , Cidofovir , Cricetinae , Citosina/administração & dosagem , Citosina/análogos & derivados , Citosina/uso terapêutico , Modelos Animais de Doenças , Ganciclovir/administração & dosagem , Ganciclovir/análogos & derivados , Ganciclovir/uso terapêutico , Humanos , Terapia de Imunossupressão , Fígado/efeitos dos fármacos , Fígado/virologia , Masculino , Organofosfonatos/administração & dosagem , Organofosfonatos/uso terapêutico , Valganciclovir , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
20.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250128

RESUMO

Syrian hamsters are permissive for the replication of species C human adenoviruses (HAdV-C). The virus replicates to high titers in the liver of these animals after intravenous infection, while respiratory infection results in virus replication in the lung. Here we show that two types belonging to species C, HAdV-C5 and HAdV-C6, replicate to significantly different extents and cause pathology with significantly different severities, with HAdV-C6 replicating better and inducing more severe and more widespread lesions. The virus burdens in the livers of HAdV-C6-infected hamsters are higher than the virus burdens in HAdV-C5-infected ones because more of the permissive hepatocytes get infected. Furthermore, when hamsters are infected intravenously with HAdV-C6, live, infectious virus can be isolated from the lung and the kidney, which is not seen with HAdV-C5. Similarly to mouse models, in hamsters, HAdV-C6 is sequestered by macrophages to a lesser degree than HAdV-C5. Depletion of Kupffer cells from the liver greatly increases the replication of HAdV-C5 in the liver, while it has only a modest effect on the replication of HAdV-C6. Elimination of Kupffer cells also dramatically increases the pathology induced by HAdV-C5. These findings indicate that in hamsters, pathology resulting from intravenous infection with adenoviruses is caused mostly by replication in hepatocytes and not by the abortive infection of Kupffer cells and the following cytokine storm.IMPORTANCE Immunocompromised human patients can develop severe, often lethal adenovirus infections. Respiratory adenovirus infection among military recruits is a serious problem, in some cases requiring hospitalization of the patient. Furthermore, adenovirus-based vectors are frequently used as experimental viral therapeutic agents. Thus, it is imperative that we investigate the pathogenesis of adenoviruses in a permissive animal model. Syrian hamsters are susceptible to infection with certain human adenoviruses, and the pathology accompanying these infections is similar to what is observed with adenovirus-infected human patients. We demonstrate that replication in permissive cells in a susceptible host animal is a major part of the mechanism by which systemic adenovirus infection induces pathology, as opposed to the chiefly immune-mediated pathology observed in nonsusceptible hosts. These findings support the use of compounds inhibiting adenovirus replication as a means to block adenovirus-induced pathology.


Assuntos
Infecções por Adenovirus Humanos/patologia , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/patogenicidade , Fígado/virologia , Carga Viral , Replicação Viral , Adenovírus Humanos/classificação , Adenovírus Humanos/fisiologia , Animais , Linhagem Celular , Cricetinae , Modelos Animais de Doenças , Humanos , Rim/virologia , Células de Kupffer/virologia , Fígado/patologia , Pulmão/virologia , Macrófagos/virologia , Mesocricetus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...